algebraische Erweiterung

algebraische Erweiterung
алгебраическое расширение

Немецко-русский математический словарь. 2013.

Игры ⚽ Поможем решить контрольную работу

Смотреть что такое "algebraische Erweiterung" в других словарях:

  • Algebraische Erweiterung — In der Algebra heißt eine Körpererweiterung algebraisch, wenn jedes Element von algebraisch über ist, d.h. wenn jedes Element von Nullstelle eines Polynoms mit Koeffizienten in ist. Körpererweiterungen, die nicht algebraisch sind, also… …   Deutsch Wikipedia

  • Algebraische Körpererweiterung — In der Algebra heißt eine Körpererweiterung algebraisch, wenn jedes Element von algebraisch über ist, d.h. wenn jedes Element von Nullstelle eines Polynoms mit Koeffizienten in ist. Körpererweiterungen, die nicht algebraisch sind, also …   Deutsch Wikipedia

  • Algebraische Unabhängigkeit — In der abstrakten Algebra ist die algebraische Unabhängigkeit eine Eigenschaft von Elementen einer transzendenten Körpererweiterung, welche besagt, dass diese Elemente keine nichttriviale Polynomgleichung mit Koeffizienten im Grundkörper erfüllen …   Deutsch Wikipedia

  • Galois-Erweiterung — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Transzendente Erweiterung — In der Algebra heißt eine Körpererweiterung algebraisch, wenn jedes Element von algebraisch über ist, d.h. wenn jedes Element von Nullstelle eines Polynoms mit Koeffizienten in ist. Körpererweiterungen, die nicht algebraisch sind, also …   Deutsch Wikipedia

  • Abelsche Erweiterung — Im mathematischen Teilgebiet der Algebra ist eine abelsche Erweiterung eine galoissche Körpererweiterung mit abelscher Galoisgruppe. Im Spezialfall einer zyklischen Galoisgruppe liegt eine zyklische Erweiterung vor. Die Klassenkörpertheorie… …   Deutsch Wikipedia

  • Endliche Galoiserweiterung — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Erweiterungskörper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Galoissch — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Körpererweiterung (Mathematik) — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Perfekter Körper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»